Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
int2(0, 0) -> .2(0, nil)
int2(0, s1(y)) -> .2(0, int2(s1(0), s1(y)))
int2(s1(x), 0) -> nil
int2(s1(x), s1(y)) -> int_list1(int2(x, y))
int_list1(nil) -> nil
int_list1(.2(x, y)) -> .2(s1(x), int_list1(y))
Q is empty.
↳ QTRS
↳ Non-Overlap Check
Q restricted rewrite system:
The TRS R consists of the following rules:
int2(0, 0) -> .2(0, nil)
int2(0, s1(y)) -> .2(0, int2(s1(0), s1(y)))
int2(s1(x), 0) -> nil
int2(s1(x), s1(y)) -> int_list1(int2(x, y))
int_list1(nil) -> nil
int_list1(.2(x, y)) -> .2(s1(x), int_list1(y))
Q is empty.
The TRS is non-overlapping. Hence, we can switch to innermost.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
int2(0, 0) -> .2(0, nil)
int2(0, s1(y)) -> .2(0, int2(s1(0), s1(y)))
int2(s1(x), 0) -> nil
int2(s1(x), s1(y)) -> int_list1(int2(x, y))
int_list1(nil) -> nil
int_list1(.2(x, y)) -> .2(s1(x), int_list1(y))
The set Q consists of the following terms:
int2(0, 0)
int2(0, s1(x0))
int2(s1(x0), 0)
int2(s1(x0), s1(x1))
int_list1(nil)
int_list1(.2(x0, x1))
Q DP problem:
The TRS P consists of the following rules:
INT_LIST1(.2(x, y)) -> INT_LIST1(y)
INT2(s1(x), s1(y)) -> INT2(x, y)
INT2(s1(x), s1(y)) -> INT_LIST1(int2(x, y))
INT2(0, s1(y)) -> INT2(s1(0), s1(y))
The TRS R consists of the following rules:
int2(0, 0) -> .2(0, nil)
int2(0, s1(y)) -> .2(0, int2(s1(0), s1(y)))
int2(s1(x), 0) -> nil
int2(s1(x), s1(y)) -> int_list1(int2(x, y))
int_list1(nil) -> nil
int_list1(.2(x, y)) -> .2(s1(x), int_list1(y))
The set Q consists of the following terms:
int2(0, 0)
int2(0, s1(x0))
int2(s1(x0), 0)
int2(s1(x0), s1(x1))
int_list1(nil)
int_list1(.2(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
INT_LIST1(.2(x, y)) -> INT_LIST1(y)
INT2(s1(x), s1(y)) -> INT2(x, y)
INT2(s1(x), s1(y)) -> INT_LIST1(int2(x, y))
INT2(0, s1(y)) -> INT2(s1(0), s1(y))
The TRS R consists of the following rules:
int2(0, 0) -> .2(0, nil)
int2(0, s1(y)) -> .2(0, int2(s1(0), s1(y)))
int2(s1(x), 0) -> nil
int2(s1(x), s1(y)) -> int_list1(int2(x, y))
int_list1(nil) -> nil
int_list1(.2(x, y)) -> .2(s1(x), int_list1(y))
The set Q consists of the following terms:
int2(0, 0)
int2(0, s1(x0))
int2(s1(x0), 0)
int2(s1(x0), s1(x1))
int_list1(nil)
int_list1(.2(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 2 SCCs with 1 less node.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
INT_LIST1(.2(x, y)) -> INT_LIST1(y)
The TRS R consists of the following rules:
int2(0, 0) -> .2(0, nil)
int2(0, s1(y)) -> .2(0, int2(s1(0), s1(y)))
int2(s1(x), 0) -> nil
int2(s1(x), s1(y)) -> int_list1(int2(x, y))
int_list1(nil) -> nil
int_list1(.2(x, y)) -> .2(s1(x), int_list1(y))
The set Q consists of the following terms:
int2(0, 0)
int2(0, s1(x0))
int2(s1(x0), 0)
int2(s1(x0), s1(x1))
int_list1(nil)
int_list1(.2(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
INT_LIST1(.2(x, y)) -> INT_LIST1(y)
Used argument filtering: INT_LIST1(x1) = x1
.2(x1, x2) = .1(x2)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
int2(0, 0) -> .2(0, nil)
int2(0, s1(y)) -> .2(0, int2(s1(0), s1(y)))
int2(s1(x), 0) -> nil
int2(s1(x), s1(y)) -> int_list1(int2(x, y))
int_list1(nil) -> nil
int_list1(.2(x, y)) -> .2(s1(x), int_list1(y))
The set Q consists of the following terms:
int2(0, 0)
int2(0, s1(x0))
int2(s1(x0), 0)
int2(s1(x0), s1(x1))
int_list1(nil)
int_list1(.2(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
Q DP problem:
The TRS P consists of the following rules:
INT2(s1(x), s1(y)) -> INT2(x, y)
INT2(0, s1(y)) -> INT2(s1(0), s1(y))
The TRS R consists of the following rules:
int2(0, 0) -> .2(0, nil)
int2(0, s1(y)) -> .2(0, int2(s1(0), s1(y)))
int2(s1(x), 0) -> nil
int2(s1(x), s1(y)) -> int_list1(int2(x, y))
int_list1(nil) -> nil
int_list1(.2(x, y)) -> .2(s1(x), int_list1(y))
The set Q consists of the following terms:
int2(0, 0)
int2(0, s1(x0))
int2(s1(x0), 0)
int2(s1(x0), s1(x1))
int_list1(nil)
int_list1(.2(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
INT2(s1(x), s1(y)) -> INT2(x, y)
Used argument filtering: INT2(x1, x2) = x2
s1(x1) = s1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
INT2(0, s1(y)) -> INT2(s1(0), s1(y))
The TRS R consists of the following rules:
int2(0, 0) -> .2(0, nil)
int2(0, s1(y)) -> .2(0, int2(s1(0), s1(y)))
int2(s1(x), 0) -> nil
int2(s1(x), s1(y)) -> int_list1(int2(x, y))
int_list1(nil) -> nil
int_list1(.2(x, y)) -> .2(s1(x), int_list1(y))
The set Q consists of the following terms:
int2(0, 0)
int2(0, s1(x0))
int2(s1(x0), 0)
int2(s1(x0), s1(x1))
int_list1(nil)
int_list1(.2(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 0 SCCs with 1 less node.